O.P.Code: 19EC0407

R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech II Year II Semester Supplementary Examinations May/June-2024

ELECTRONIC CIRCUIT ANALYSIS			
(Electronics and Communication Engineering)			
Time: 3 Hours (Answer all Five Units $5 \times 12 = 60 \text{ Marks}$) UNIT-I	Max.	Mar	ks: 60
1 a Sketch the Hybrid-pi model and explain the significance of each and every component in it.		L3	6M
b Deduce the expression for Emitter diffusion capacitance of CE transistor at high frequency.	CO1	L4	6M
OR			
With the help of necessary circuit diagrams and approximations, deduce the expression for CE short circuit current gain and derive the relation between fβ and fT.	CO2	L4	12M
UNIT-II			
3 Deduce the expressions of Gain, input and output resistances for a Voltage Shunt feed back amplifier.	CO2	L4	12M
OR			
4 a Explain the effect of negative feedback on input resistance for Current shunt and Voltage shunt Feedback amplifier.	CO2	L2	6M
b Compare various types of feedback amplifiers. UNIT-III	CO2	L4	6M
5 a Establish the condition for oscillation with suitable diagram.	CO2	L3	8M
b Classify various types of oscillators.	CO1	L2	4M
OR			
Analyze an LC Oscillator for a necessary equation to determine criteria for oscillations.	CO2	L4	12M
UNIT-IV			
7 a Discuss about Transformer coupled Class A Power Amplifier with diagram and determine its Maximum efficiency.		L3	6M
b A Class B push pull amplifier drives a load of 16Ω, connected to the secondary of ideal transformer. The Vcc is 25V. If number of turns on	CO4	L3	6M
primary is 200 and secondary is 50. Determine maximum power output, DC power input and efficiency.			8
8 Discuss about Double Tuned Amplifier with part diagram and deduce			
the expression for its bandwidth.	CO2	L4	12M
9 a What is a Monostable multivibrator? Explain its working with the help of waveforms.	CO2	L2	6M
b Deduce the expression for pulse width, T of collector coupled Monostable multivibrator.	CO2	L4	6M

- 10 a Calculate the component values of a Monostable multivibrator CO3 L4 6M developing an output pulse of 140μs duration. Assume hFEmin =20, Ic(sat) =6 mA, VCC=6 V, VBB= -1.5V.
 - b Design and draw a saturated collector coupled monostable multivibrator CO3 L6 6M for the following specifications: VCC = 10 V, VBB = -5 V, pulse duration = 12ms, IC(ON)= 2 mA and two NPN transistors with minimum hfe =100 and ICBO=0.

*** END ***